Home
Class 12
MATHS
If AB=0, then for the matrices A=[{:(co...

If AB=0, then for the matrices
A=`[{:(cos^2theta,sinthetacostheta),(sinthetacostheta,cos^2theta):}]` and
B=`[{:(cos^2phi,sinphicosphi),(sinphicosphi,cos^2phi):}]`
`(theta-phi)`is

A

an odd multiple of `(pi)/(2)`

B

an odd multiple of `pi`

C

an even multiple of `(pi)/(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \theta - \phi \) given that the product of matrices \( A \) and \( B \) is equal to the zero matrix. Let's break down the solution step by step. ### Step 1: Define the matrices We have two matrices: \[ A = \begin{pmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{pmatrix} \] \[ B = \begin{pmatrix} \cos^2 \phi & \sin \phi \cos \phi \\ \sin \phi \cos \phi & \cos^2 \phi \end{pmatrix} \] ### Step 2: Matrix multiplication To find \( AB \), we multiply the matrices \( A \) and \( B \): \[ AB = \begin{pmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{pmatrix} \begin{pmatrix} \cos^2 \phi & \sin \phi \cos \phi \\ \sin \phi \cos \phi & \cos^2 \phi \end{pmatrix} \] ### Step 3: Calculate the elements of the resulting matrix 1. **First row, first column:** \[ \cos^2 \theta \cdot \cos^2 \phi + \sin \theta \cos \theta \cdot \sin \phi \cos \phi \] 2. **First row, second column:** \[ \cos^2 \theta \cdot \sin \phi \cos \phi + \sin \theta \cos \theta \cdot \cos^2 \phi \] 3. **Second row, first column:** \[ \sin \theta \cos \theta \cdot \cos^2 \phi + \cos^2 \theta \cdot \sin \phi \cos \phi \] 4. **Second row, second column:** \[ \sin \theta \cos \theta \cdot \sin \phi \cos \phi + \cos^2 \theta \cdot \cos^2 \phi \] ### Step 4: Set the resulting matrix equal to the zero matrix Since \( AB = 0 \), we equate each element to zero: 1. \( \cos^2 \theta \cos^2 \phi + \sin \theta \cos \theta \sin \phi \cos \phi = 0 \) 2. \( \cos^2 \theta \sin \phi \cos \phi + \sin \theta \cos \theta \cos^2 \phi = 0 \) 3. \( \sin \theta \cos \theta \cos^2 \phi + \cos^2 \theta \sin \phi \cos \phi = 0 \) 4. \( \sin \theta \cos \theta \sin \phi \cos \phi + \cos^2 \theta \cos^2 \phi = 0 \) ### Step 5: Simplifying the equations From the first equation, we can factor out common terms: \[ \cos^2 \theta \cos^2 \phi + \sin \theta \cos \theta \sin \phi \cos \phi = 0 \] This can be rearranged to: \[ \cos^2 \theta \cos^2 \phi = -\sin \theta \cos \theta \sin \phi \cos \phi \] ### Step 6: Use trigonometric identities Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \), we can express \( \sin \theta \) in terms of \( \cos \theta \) and vice versa. ### Step 7: Solve for \( \theta - \phi \) From the equations, we can derive: \[ \cos(\theta - \phi) = 0 \] This implies: \[ \theta - \phi = \frac{\pi}{2} + n\pi, \quad n \in \mathbb{Z} \] Thus, the solution can be expressed as: \[ \theta - \phi = (2n + 1) \frac{\pi}{2}, \quad n \in \mathbb{Z} \] ### Final Answer: \[ \theta - \phi = (2n + 1) \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-IV|6 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-III|21 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If AB=O for the matrices A=[[cos^2theta,costhetasintheta],[costhetasintheta,sin^2theta]] and B=[[cos^2phi,cosphisinphi],[cosphisinphi,sin^2phi]] then theta-phi is

The product of matrices A=[[cos^2theta,costheta],[sinthetacostheta,sinthetasin^2theta]] and B=[[cos^2phicosphi,sinphicosphi],[sinphi,sin^2phi]] is a null matrix if theta-phi= (A) 2npi,n in Z (B) (npi)/2, n in Z (C) (2n+1)pi/2, n in Z (D) npi, n in Z

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi), (cos phi sin phi,sin^2 phi)]=0

If theta-phi=pi/2, then show that [[cos^2theta,costhetasintheta],[costhetasintheta,sin^2theta]]*[[cos^2phi,cosphisinphi],[cosphisinphi,sin^2phi]]=0

If A = [[cos^2theta, costhetasintheta],[costhetasintheta, sin^2theta]] B= [[cos^2phi, cosphisinphi], [cosphisinphi, sin^2phi]] and theta - phi = (2n+1)(pi)/2 Find AB.

If A=[(cos^2theta,costheta sintheta),(cos theta sintheta, sin^2theta)] and B=[(cos^2 phi, cos phi sin phi),(cos phisinphi,sin^2phi)], show that AB is zero matrix if theta and phi differ by an odd multiple of pi/2.

RESONANCE-MATRICES & DETERMINANT-EXERCISE-2
  1. Flind the product of two matrices A =[[cos^(2) theta , cos theta sin...

    Text Solution

    |

  2. If AB=0, then for the matrices A=[{:(cos^2theta,sinthetacostheta),(si...

    Text Solution

    |

  3. If X=[{:(3,-4),(1,-1):}], then value of X^(n) is (where n is a natural...

    Text Solution

    |

  4. If A and B are two matrices such that AB=B and BA=A , then A^2+B^2=

    Text Solution

    |

  5. The number of nxxn matrix A and B such that AB - BA = I is. . .

    Text Solution

    |

  6. If B, C are square matrices of order n and if A = B + C, BC = CB,C^2=0...

    Text Solution

    |

  7. How many 3 x 3 skew symmetric matrices can be formed using numbers -2,...

    Text Solution

    |

  8. If A is a skew-symmetric matrix and n is an even natural number,...

    Text Solution

    |

  9. Number of 3 xx 3 non symmeteric matrix A such that A^(T)=A^(2)-I and |...

    Text Solution

    |

  10. Matrix A is such that A^(2)=2A-I, where I is the identify matrix. Then...

    Text Solution

    |

  11. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T a...

    Text Solution

    |

  12. Let Delta =|(sin theta cos phi, sin theta sin phi, cos theta), (cos th...

    Text Solution

    |

  13. Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4,...

    Text Solution

    |

  14. If D=|{:(,a^(2)+1,ab,ac),(,ba,b^(2)+1,bc),(,ca,cb,c^(2)+1):}| then D=

    Text Solution

    |

  15. Value of the Delta=|{:(,a^(3)-x,a^(4)-x,a^(5)-x),(,a^(5)-x,a^(6)-x,a^(...

    Text Solution

    |

  16. If Delta1=|[2a,b,e],[2d,e,f],[4x,2y,2z]|,Delta2=|[f,2d,e],[2z,4x,2y],[...

    Text Solution

    |

  17. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  18. Let A=|{:(,-2,7,sqrt3),(,0,0,-2),(,0,2,0):}| and A^(4)=lambda,I,"then"...

    Text Solution

    |

  19. If A is 3 xx 3 square matrix whose characteristics polynomical equatio...

    Text Solution

    |

  20. If a , b , c are non-zero, then the system of equations (alpha+a)x+alp...

    Text Solution

    |