Home
Class 12
MATHS
If X=[{:(3,-4),(1,-1):}], then value of ...

If X=`[{:(3,-4),(1,-1):}]`, then value of `X^(n)` is (where n is a natural number)

A

`{:[(,3n,-4),(,n,-n)]:}`

B

`{:[(,2n+n,5-n),(,n,-n)]:}`

C

`{:[(,3^(n),(-4)^(n)),(,1^(n),(-1)^(n))]:}`

D

`{:[(,2n+1,-4),(,n,-(2n-1))]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( X^n \) where \( X = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \) and \( n \) is a natural number, we can use the property of matrices and their eigenvalues. ### Step 1: Find the characteristic polynomial of the matrix \( X \). The characteristic polynomial is given by the determinant of \( (X - \lambda I) \), where \( I \) is the identity matrix. \[ X - \lambda I = \begin{pmatrix} 3 - \lambda & -4 \\ 1 & -1 - \lambda \end{pmatrix} \] Now, we calculate the determinant: \[ \text{det}(X - \lambda I) = (3 - \lambda)(-1 - \lambda) - (-4)(1) \] Calculating this gives: \[ = (-3 - 3\lambda + \lambda + \lambda^2 + 4) = \lambda^2 - 2\lambda + 1 \] ### Step 2: Solve the characteristic polynomial. Setting the characteristic polynomial to zero: \[ \lambda^2 - 2\lambda + 1 = 0 \] This can be factored as: \[ (\lambda - 1)^2 = 0 \] Thus, the eigenvalue \( \lambda = 1 \) with algebraic multiplicity 2. ### Step 3: Find the eigenvectors. To find the eigenvectors, we solve \( (X - I)v = 0 \): \[ X - I = \begin{pmatrix} 3 - 1 & -4 \\ 1 & -1 - 1 \end{pmatrix} = \begin{pmatrix} 2 & -4 \\ 1 & -2 \end{pmatrix} \] Setting up the equations: \[ 2x - 4y = 0 \quad \text{(1)} \] \[ x - 2y = 0 \quad \text{(2)} \] From equation (2), we can see that \( x = 2y \). Let \( y = t \), then \( x = 2t \). The eigenvector corresponding to \( \lambda = 1 \) is: \[ v = \begin{pmatrix} 2t \\ t \end{pmatrix} = t \begin{pmatrix} 2 \\ 1 \end{pmatrix} \] ### Step 4: Use the Jordan form for powers of \( X \). Since \( X \) has a repeated eigenvalue, we can express \( X \) in Jordan form. The Jordan form \( J \) is: \[ J = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] The matrix \( X \) can be expressed as \( X = PJP^{-1} \), where \( P \) is the matrix of eigenvectors. ### Step 5: Calculate \( X^n \). Using the property of the Jordan block, we have: \[ J^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \] Thus, \[ X^n = PJ^nP^{-1} \] ### Step 6: Final Calculation. After calculating \( X^n \), we find: \[ X^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \] Substituting back gives us the final result for \( X^n \). ### Conclusion The value of \( X^n \) can be expressed in terms of \( n \) as follows: \[ X^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-IV|6 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-III|21 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If {:X=[(3,-4),(1,-1)]:} , the value of X^n is equal to

lim_(x rarr -a) (x^(n)+a^(n))/(x+a) (where n is an odd natural number)

If the sum of the digits of a number (10^(n)-1) is 4707, where n is a natural number,then the value of n is :

If the sum of the digits of a number 10^(n) - 1 , where n is a natural number, is equal to 3798, then what is the value of n ?

If X={4^(n)-3n-1:n in N} and Y={9(n-1):n in N} ,where N is the set of natural numbers,then X uu Y is equal to (1)N(2)Y-X(3)X(4)Y

If three consective coefficient in the expansion of (1+x)^(n) , where n is a natural number are 36,84 and 126 respectively, then n is __________

If f:(0,oo)rarr N and f(x)=[(x^(2)+x+1)/(x^(2)+1)]+[(4x^(2)+x+2)/(2x^(2)+1)]+[(9x^(2)+x+3)/(3x^(2)+1)]...+[(n^(2)x^(2)+x+n)/(nx^(2)+1)],n in N." Then lim_(n rarr oo)((f(x)-n)/((f(x))^(2)-(n^(3)(n+2))/(4)))=l, then the value of l^(10)-10^(l) is (where [.] denotes G.I.F and N set of natural numbers)

RESONANCE-MATRICES & DETERMINANT-EXERCISE-2
  1. Flind the product of two matrices A =[[cos^(2) theta , cos theta sin...

    Text Solution

    |

  2. If AB=0, then for the matrices A=[{:(cos^2theta,sinthetacostheta),(si...

    Text Solution

    |

  3. If X=[{:(3,-4),(1,-1):}], then value of X^(n) is (where n is a natural...

    Text Solution

    |

  4. If A and B are two matrices such that AB=B and BA=A , then A^2+B^2=

    Text Solution

    |

  5. The number of nxxn matrix A and B such that AB - BA = I is. . .

    Text Solution

    |

  6. If B, C are square matrices of order n and if A = B + C, BC = CB,C^2=0...

    Text Solution

    |

  7. How many 3 x 3 skew symmetric matrices can be formed using numbers -2,...

    Text Solution

    |

  8. If A is a skew-symmetric matrix and n is an even natural number,...

    Text Solution

    |

  9. Number of 3 xx 3 non symmeteric matrix A such that A^(T)=A^(2)-I and |...

    Text Solution

    |

  10. Matrix A is such that A^(2)=2A-I, where I is the identify matrix. Then...

    Text Solution

    |

  11. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T a...

    Text Solution

    |

  12. Let Delta =|(sin theta cos phi, sin theta sin phi, cos theta), (cos th...

    Text Solution

    |

  13. Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4,...

    Text Solution

    |

  14. If D=|{:(,a^(2)+1,ab,ac),(,ba,b^(2)+1,bc),(,ca,cb,c^(2)+1):}| then D=

    Text Solution

    |

  15. Value of the Delta=|{:(,a^(3)-x,a^(4)-x,a^(5)-x),(,a^(5)-x,a^(6)-x,a^(...

    Text Solution

    |

  16. If Delta1=|[2a,b,e],[2d,e,f],[4x,2y,2z]|,Delta2=|[f,2d,e],[2z,4x,2y],[...

    Text Solution

    |

  17. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  18. Let A=|{:(,-2,7,sqrt3),(,0,0,-2),(,0,2,0):}| and A^(4)=lambda,I,"then"...

    Text Solution

    |

  19. If A is 3 xx 3 square matrix whose characteristics polynomical equatio...

    Text Solution

    |

  20. If a , b , c are non-zero, then the system of equations (alpha+a)x+alp...

    Text Solution

    |