Home
Class 12
MATHS
Value of the Delta=|{:(,a^(3)-x,a^(4)-x,...

Value of the `Delta=|{:(,a^(3)-x,a^(4)-x,a^(5)-x),(,a^(5)-x,a^(6)-x,a^(7)-x),(,a^(7)-x,a^(8)-x,a^(9)-x):}|` then the value of `Delta_(1)-Delta_(2)` is

A

0

B

`(a^(3)-1)(a^(6)-1)(a^(9)-1)`

C

`(a^(3)+1)(a^(6)+1)(a^(9)+1)`

D

`a^(15)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta \) given by: \[ \Delta = \begin{vmatrix} a^3 - x & a^4 - x & a^5 - x \\ a^5 - x & a^6 - x & a^7 - x \\ a^7 - x & a^8 - x & a^9 - x \end{vmatrix} \] ### Step 1: Write the Determinant We start with the determinant as defined above. ### Step 2: Expand the Determinant We can expand the determinant using the formula for a \(3 \times 3\) determinant: \[ \Delta = a^3 - x \begin{vmatrix} a^6 - x & a^7 - x \\ a^8 - x & a^9 - x \end{vmatrix} - (a^4 - x) \begin{vmatrix} a^5 - x & a^7 - x \\ a^7 - x & a^9 - x \end{vmatrix} + (a^5 - x) \begin{vmatrix} a^5 - x & a^6 - x \\ a^7 - x & a^8 - x \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants We will calculate the \(2 \times 2\) determinants one by one. 1. For the first determinant: \[ \begin{vmatrix} a^6 - x & a^7 - x \\ a^8 - x & a^9 - x \end{vmatrix} = (a^6 - x)(a^9 - x) - (a^7 - x)(a^8 - x) \] 2. For the second determinant: \[ \begin{vmatrix} a^5 - x & a^7 - x \\ a^7 - x & a^9 - x \end{vmatrix} = (a^5 - x)(a^9 - x) - (a^7 - x)^2 \] 3. For the third determinant: \[ \begin{vmatrix} a^5 - x & a^6 - x \\ a^7 - x & a^8 - x \end{vmatrix} = (a^5 - x)(a^8 - x) - (a^6 - x)(a^7 - x) \] ### Step 4: Substitute Back into the Determinant Now, we substitute these back into the expression for \( \Delta \). ### Step 5: Simplify the Expression After substituting, we simplify the expression. This will involve a lot of algebraic manipulation, but ultimately we will find that many terms cancel out. ### Step 6: Evaluate \( \Delta \) After simplification, we find that: \[ \Delta = 0 \] ### Step 7: Find \( \Delta_1 \) and \( \Delta_2 \) Since \( \Delta = 0 \), we conclude that \( \Delta_1 \) and \( \Delta_2 \) must also be \( 0 \). ### Step 8: Calculate \( \Delta_1 - \Delta_2 \) Thus, we find: \[ \Delta_1 - \Delta_2 = 0 - 0 = 0 \] ### Final Answer The value of \( \Delta_1 - \Delta_2 \) is \( 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-IV|6 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-III|21 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Suppose a epsilon R and x!=0 . Let Delta (x)=|(1-x,a,a^(2)),(a,a^(2)-x,a^(3)),(a^(2),a^(3),a^(4)-x)| Number of values of x which Delta(x)=0 is

If Delta_(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta_(2) = |(x,2,7),(x +1,3,-5),(x,7,4)| , then the value of x for which Delta_(1) + Delta_(2) = 0 , is

If [(2,3),(5,7)] [(1,-3),(-2,4)]=[(-4,6),(-9,x)], write the value of x

[{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,y is

If (5x)/(2)-[7(6x)-3/2]=5/8 then what is the value of x

If (x-1)(x-3)(x-5)(x-7)=9, find the value of x.

RESONANCE-MATRICES & DETERMINANT-EXERCISE-2
  1. Flind the product of two matrices A =[[cos^(2) theta , cos theta sin...

    Text Solution

    |

  2. If AB=0, then for the matrices A=[{:(cos^2theta,sinthetacostheta),(si...

    Text Solution

    |

  3. If X=[{:(3,-4),(1,-1):}], then value of X^(n) is (where n is a natural...

    Text Solution

    |

  4. If A and B are two matrices such that AB=B and BA=A , then A^2+B^2=

    Text Solution

    |

  5. The number of nxxn matrix A and B such that AB - BA = I is. . .

    Text Solution

    |

  6. If B, C are square matrices of order n and if A = B + C, BC = CB,C^2=0...

    Text Solution

    |

  7. How many 3 x 3 skew symmetric matrices can be formed using numbers -2,...

    Text Solution

    |

  8. If A is a skew-symmetric matrix and n is an even natural number,...

    Text Solution

    |

  9. Number of 3 xx 3 non symmeteric matrix A such that A^(T)=A^(2)-I and |...

    Text Solution

    |

  10. Matrix A is such that A^(2)=2A-I, where I is the identify matrix. Then...

    Text Solution

    |

  11. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T a...

    Text Solution

    |

  12. Let Delta =|(sin theta cos phi, sin theta sin phi, cos theta), (cos th...

    Text Solution

    |

  13. Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4,...

    Text Solution

    |

  14. If D=|{:(,a^(2)+1,ab,ac),(,ba,b^(2)+1,bc),(,ca,cb,c^(2)+1):}| then D=

    Text Solution

    |

  15. Value of the Delta=|{:(,a^(3)-x,a^(4)-x,a^(5)-x),(,a^(5)-x,a^(6)-x,a^(...

    Text Solution

    |

  16. If Delta1=|[2a,b,e],[2d,e,f],[4x,2y,2z]|,Delta2=|[f,2d,e],[2z,4x,2y],[...

    Text Solution

    |

  17. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  18. Let A=|{:(,-2,7,sqrt3),(,0,0,-2),(,0,2,0):}| and A^(4)=lambda,I,"then"...

    Text Solution

    |

  19. If A is 3 xx 3 square matrix whose characteristics polynomical equatio...

    Text Solution

    |

  20. If a , b , c are non-zero, then the system of equations (alpha+a)x+alp...

    Text Solution

    |