Home
Class 12
MATHS
If A=|{:(,5a,-b),(,3,2):}| and A adj A=A...

If `A=|{:(,5a,-b),(,3,2):}|` and A adj `A=A A^(T)`, then 5a+b is equal to

A

5

B

4

C

13

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(5a + b\) given the matrix \(A\) and the condition \(A \cdot \text{adj}(A) = A \cdot A^T\). ### Step-by-Step Solution: 1. **Define the Matrix \(A\)**: \[ A = \begin{pmatrix} 5a & -b \\ 3 & 2 \end{pmatrix} \] 2. **Find the Adjoint of Matrix \(A\)**: For a \(2 \times 2\) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), the adjoint is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Thus, for our matrix \(A\): \[ \text{adj}(A) = \begin{pmatrix} 2 & b \\ -3 & 5a \end{pmatrix} \] 3. **Calculate \(A \cdot \text{adj}(A)\)**: \[ A \cdot \text{adj}(A) = \begin{pmatrix} 5a & -b \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & b \\ -3 & 5a \end{pmatrix} \] Performing the multiplication: - First row, first column: \(5a \cdot 2 + (-b) \cdot (-3) = 10a + 3b\) - First row, second column: \(5a \cdot b + (-b) \cdot 5a = 5ab - 5ab = 0\) - Second row, first column: \(3 \cdot 2 + 2 \cdot (-3) = 6 - 6 = 0\) - Second row, second column: \(3 \cdot b + 2 \cdot 5a = 3b + 10a\) Thus, \[ A \cdot \text{adj}(A) = \begin{pmatrix} 10a + 3b & 0 \\ 0 & 3b + 10a \end{pmatrix} \] 4. **Calculate \(A \cdot A^T\)**: First, find \(A^T\): \[ A^T = \begin{pmatrix} 5a & 3 \\ -b & 2 \end{pmatrix} \] Now calculate \(A \cdot A^T\): \[ A \cdot A^T = \begin{pmatrix} 5a & -b \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 5a & 3 \\ -b & 2 \end{pmatrix} \] Performing the multiplication: - First row, first column: \(5a \cdot 5a + (-b) \cdot (-b) = 25a^2 + b^2\) - First row, second column: \(5a \cdot 3 + (-b) \cdot 2 = 15a - 2b\) - Second row, first column: \(3 \cdot 5a + 2 \cdot (-b) = 15a - 2b\) - Second row, second column: \(3 \cdot 3 + 2 \cdot 2 = 9 + 4 = 13\) Thus, \[ A \cdot A^T = \begin{pmatrix} 25a^2 + b^2 & 15a - 2b \\ 15a - 2b & 13 \end{pmatrix} \] 5. **Set the Two Results Equal**: From the condition \(A \cdot \text{adj}(A) = A \cdot A^T\), we equate: \[ \begin{pmatrix} 10a + 3b & 0 \\ 0 & 10a + 3b \end{pmatrix} = \begin{pmatrix} 25a^2 + b^2 & 15a - 2b \\ 15a - 2b & 13 \end{pmatrix} \] This gives us two equations: - \(10a + 3b = 25a^2 + b^2\) (1) - \(10a + 3b = 13\) (2) 6. **Solve the Equations**: From equation (2): \[ 10a + 3b = 13 \] Rearranging gives: \[ 3b = 13 - 10a \quad \Rightarrow \quad b = \frac{13 - 10a}{3} \] Substitute \(b\) into equation (1): \[ 10a + 3\left(\frac{13 - 10a}{3}\right) = 25a^2 + \left(\frac{13 - 10a}{3}\right)^2 \] Simplifying: \[ 10a + 13 - 10a = 25a^2 + \frac{(13 - 10a)^2}{9} \] This reduces to: \[ 13 = 25a^2 + \frac{169 - 260a + 100a^2}{9} \] Multiply through by 9 to eliminate the fraction: \[ 117 = 225a^2 + 169 - 260a + 100a^2 \] Combine like terms: \[ 0 = 325a^2 - 260a + 52 \] Solving this quadratic equation using the quadratic formula: \[ a = \frac{-(-260) \pm \sqrt{(-260)^2 - 4 \cdot 325 \cdot 52}}{2 \cdot 325} \] After solving for \(a\), substitute back to find \(b\). 7. **Find \(5a + b\)**: Finally, substitute the values of \(a\) and \(b\) into \(5a + b\) to find the answer.
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-3|31 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If A=[(5a, -b),(3,2)] and A adj A=A A^T, then 5a+b is equal to: (A) -1 (B) 5 (C) 4 (D) 13

If A=[[a,-b],[3,2]] and AadjA=A(A^(T)) then (5a+b)/(2)=

If ( 3a+ 5b)/(3a- 5b) = 5 , then a: b is equal to

If A[(-1,5),(-3,2)] , then adj A=

If A={:[(4,2),(5,3)]:}" then :"|adj(adjA)|=

If a*b=2a-3b+ab , then 3*5+5*3 is equal to:

If a:b=5:7 , then (5a-3b):(4a-2b) is equal to :

RESONANCE-MATRICES & DETERMINANT-PART-II:
  1. If the trivial solution is the only solution of the system of equation...

    Text Solution

    |

  2. Statement -1 : Determinant of a skew-symmetric matrix of order 3 is ze...

    Text Solution

    |

  3. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  4. Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a n d""P^2Q""=""Q...

    Text Solution

    |

  5. The number of values of k, for which the system of eauations: (k+1)x...

    Text Solution

    |

  6. If P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of a 3 x 3 matrix ...

    Text Solution

    |

  7. If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)...

    Text Solution

    |

  8. If A is an 3xx3 non-singular matrix such that AA^'=""A^' A and B""=...

    Text Solution

    |

  9. If A=[1 2 2 2 1-2a2b] is a matrix satisfying the equation AA^T=""9I , ...

    Text Solution

    |

  10. The set of the all values of lamda for which the system of linear equa...

    Text Solution

    |

  11. The system of linear equations: x+lambday-z=0 lamdax-y-z=0 x+y-l...

    Text Solution

    |

  12. If A=|{:(,5a,-b),(,3,2):}| and A adj A=A A^(T), then 5a+b is equal to

    Text Solution

    |

  13. If S is the set of distinct values of ' b for which the following syst...

    Text Solution

    |

  14. If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

    Text Solution

    |

  15. If the system of linear equations x+ky+3z=0 3x+ky-2z=0 2x+4y-3z=0 ...

    Text Solution

    |

  16. If |(x-4,2x,2x),(2x,x-4,2x),(2x,2x,x-4)|=(A+Bx)(x-A)^2 then the ordere...

    Text Solution

    |

  17. The system of linear equations x + y + z = 2 2x + 3y + 2z = 5 2...

    Text Solution

    |

  18. If A=[(costheta, -sin theta ),(sin theta, cos theta) ] , then the ma...

    Text Solution

    |

  19. Let d in R, and A= [{:(-2, " "4+d,("sin"theta)-2),(1, ("sin"theta)...

    Text Solution

    |

  20. Let A=|{:(,0,21,r),(,p,q,-r),(,p,-q,r):}|=A A^(T)=I(3) then |p| is

    Text Solution

    |