Home
Class 12
MATHS
If A=|{:(,2,-3),(,-4,1):}| then adj (3A^...

If `A=|{:(,2,-3),(,-4,1):}|` then adj `(3A^(2)+12A)` is equal to

A

`[{:(,72,-84),(,-63,51):}]`

B

`[{:(,51,63),(,84,72):}]`

C

`[{:(,51,84),(,63,72):}]`

D

`[{:(,72,-63),(,-84,51):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the adjoint of the matrix \(3A^2 + 12A\) where \(A = \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix}\). ### Step 1: Calculate \(A^2\) First, we calculate \(A^2\): \[ A^2 = A \cdot A = \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \(2 \cdot 2 + (-3) \cdot (-4) = 4 + 12 = 16\) - First row, second column: \(2 \cdot (-3) + (-3) \cdot 1 = -6 - 3 = -9\) - Second row, first column: \(-4 \cdot 2 + 1 \cdot (-4) = -8 - 4 = -12\) - Second row, second column: \(-4 \cdot (-3) + 1 \cdot 1 = 12 + 1 = 13\) Thus, \[ A^2 = \begin{pmatrix} 16 & -9 \\ -12 & 13 \end{pmatrix} \] ### Step 2: Calculate \(3A^2\) Next, we calculate \(3A^2\): \[ 3A^2 = 3 \cdot \begin{pmatrix} 16 & -9 \\ -12 & 13 \end{pmatrix} = \begin{pmatrix} 48 & -27 \\ -36 & 39 \end{pmatrix} \] ### Step 3: Calculate \(12A\) Now, we calculate \(12A\): \[ 12A = 12 \cdot \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix} = \begin{pmatrix} 24 & -36 \\ -48 & 12 \end{pmatrix} \] ### Step 4: Calculate \(3A^2 + 12A\) Now, we add \(3A^2\) and \(12A\): \[ 3A^2 + 12A = \begin{pmatrix} 48 & -27 \\ -36 & 39 \end{pmatrix} + \begin{pmatrix} 24 & -36 \\ -48 & 12 \end{pmatrix} \] Calculating the elements: - First row, first column: \(48 + 24 = 72\) - First row, second column: \(-27 - 36 = -63\) - Second row, first column: \(-36 - 48 = -84\) - Second row, second column: \(39 + 12 = 51\) Thus, \[ 3A^2 + 12A = \begin{pmatrix} 72 & -63 \\ -84 & 51 \end{pmatrix} \] ### Step 5: Calculate the Adjoint To find the adjoint of the matrix \(B = \begin{pmatrix} 72 & -63 \\ -84 & 51 \end{pmatrix}\), we first find the minors and then the cofactors. **Minors:** - \(M_{11} = 51\) - \(M_{12} = -84\) - \(M_{21} = -63\) - \(M_{22} = 72\) **Cofactors:** - \(C_{11} = (-1)^{1+1} M_{11} = 51\) - \(C_{12} = (-1)^{1+2} M_{12} = 84\) - \(C_{21} = (-1)^{2+1} M_{21} = 63\) - \(C_{22} = (-1)^{2+2} M_{22} = 72\) Thus, the cofactor matrix is: \[ \begin{pmatrix} 51 & 84 \\ 63 & 72 \end{pmatrix} \] Now, we take the transpose of the cofactor matrix to find the adjoint: \[ \text{adj}(B) = \begin{pmatrix} 51 & 63 \\ 84 & 72 \end{pmatrix} \] ### Final Result The adjoint of \(3A^2 + 12A\) is: \[ \text{adj}(3A^2 + 12A) = \begin{pmatrix} 51 & 63 \\ 84 & 72 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-3|31 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,2),(,2,1):}] then adj A=

If A=[(2,-3),(-4,1)] then (3A^2+12A) is equal to (a) [(72,-84),(-63,51)] (b) [(51,63),(84,72)] (c) [(52,84),(63,72)] (d) [(72,-63),(-84,51)]

If A={:[(4,2),(3,4)],:}" then: "|adj,A|=

If A={:[(1,2),(3,4)]:}," then: " adj(adjA)=

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If A={:[(4,2),(5,3)]:}" then :"|adj(adjA)|=

If A=[{:(3,2),(1,4):}] then A. adj A is equal to :

If A=[(3,2,-1),(4,-1,2),(0,1,2)] then adj (adjA) is

If A=[(1,2,3),(1,4,9),(1,8,27)] , then | adj A| is equal to

RESONANCE-MATRICES & DETERMINANT-PART-II:
  1. If the trivial solution is the only solution of the system of equation...

    Text Solution

    |

  2. Statement -1 : Determinant of a skew-symmetric matrix of order 3 is ze...

    Text Solution

    |

  3. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  4. Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a n d""P^2Q""=""Q...

    Text Solution

    |

  5. The number of values of k, for which the system of eauations: (k+1)x...

    Text Solution

    |

  6. If P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of a 3 x 3 matrix ...

    Text Solution

    |

  7. If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)...

    Text Solution

    |

  8. If A is an 3xx3 non-singular matrix such that AA^'=""A^' A and B""=...

    Text Solution

    |

  9. If A=[1 2 2 2 1-2a2b] is a matrix satisfying the equation AA^T=""9I , ...

    Text Solution

    |

  10. The set of the all values of lamda for which the system of linear equa...

    Text Solution

    |

  11. The system of linear equations: x+lambday-z=0 lamdax-y-z=0 x+y-l...

    Text Solution

    |

  12. If A=|{:(,5a,-b),(,3,2):}| and A adj A=A A^(T), then 5a+b is equal to

    Text Solution

    |

  13. If S is the set of distinct values of ' b for which the following syst...

    Text Solution

    |

  14. If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

    Text Solution

    |

  15. If the system of linear equations x+ky+3z=0 3x+ky-2z=0 2x+4y-3z=0 ...

    Text Solution

    |

  16. If |(x-4,2x,2x),(2x,x-4,2x),(2x,2x,x-4)|=(A+Bx)(x-A)^2 then the ordere...

    Text Solution

    |

  17. The system of linear equations x + y + z = 2 2x + 3y + 2z = 5 2...

    Text Solution

    |

  18. If A=[(costheta, -sin theta ),(sin theta, cos theta) ] , then the ma...

    Text Solution

    |

  19. Let d in R, and A= [{:(-2, " "4+d,("sin"theta)-2),(1, ("sin"theta)...

    Text Solution

    |

  20. Let A=|{:(,0,21,r),(,p,q,-r),(,p,-q,r):}|=A A^(T)=I(3) then |p| is

    Text Solution

    |