Home
Class 12
MATHS
If f(x)=log(10)x and g(x)=e^(ln x) and h...

If `f(x)=log_(10)x and g(x)=e^(ln x) and h(x)=f [g(x)]`, then find the value of h(10).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will evaluate the functions \( f(x) \), \( g(x) \), and \( h(x) \) as defined in the question. ### Step 1: Define the functions We have: - \( f(x) = \log_{10} x \) - \( g(x) = e^{\ln x} \) ### Step 2: Simplify \( g(x) \) Using the property of logarithms and exponentials, we know that: \[ g(x) = e^{\ln x} = x \] Thus, \( g(x) \) simplifies to \( x \). ### Step 3: Define \( h(x) \) Now, we can express \( h(x) \): \[ h(x) = f(g(x)) = f(x) \] Since \( g(x) = x \), we have: \[ h(x) = f(x) = \log_{10} x \] ### Step 4: Find \( h(10) \) Now we need to find \( h(10) \): \[ h(10) = f(10) = \log_{10} 10 \] ### Step 5: Evaluate \( \log_{10} 10 \) Using the property of logarithms, we know: \[ \log_{10} 10 = 1 \] ### Conclusion Thus, the value of \( h(10) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-II:|28 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|log_(10)x| then at x=1

Given f(x) = (1)/((1-x)) , g(x) = f{f(x)} and h(x) = f{f{f(x)}}, then the value of f(x) g(x) h(x) is

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f : R to R, g : R to R and h: R to R is such that f (x) =x ^(2) , g (x) = tan x and h (x) = log x, then the value of [ho(gof),if x = (sqrtpi)/(2) will be

Given f(x)=(1)/(1-x),g(x)=f{f(x)} and h(x)=f{f{f(x)}} then the value of f(x)g(x)h(x) is

If f(x)=log_(x)(ln x) then f'(x) at x=e is

If f(x)=e^(x) and g(x)=log_(e)x, then (gof)'(x) is

If f(x)=e^(x) , and g(x)=log_(e )x , then value of fog will be

RESONANCE-MATRICES & DETERMINANT-HLP
  1. If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-...

    Text Solution

    |

  2. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  3. If f(x)=log(10)x and g(x)=e^(ln x) and h(x)=f [g(x)], then find the va...

    Text Solution

    |

  4. If A=[{:(,1,a),(,0,1):}] then find lim(n-oo) (1)/(n)A^(n)

    Text Solution

    |

  5. "Let" P=[{:(,"cos"(pi)/(9),"sin"(pi)/(9)),(,-"sin"(pi)/(9),"cos"(pi)/(...

    Text Solution

    |

  6. Let A=[{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B=[{:(,2,-1,-1),(,-1,2,-1),(,...

    Text Solution

    |

  7. Let 'A' is (4xx4) matrix such that the sum of elements in each row is ...

    Text Solution

    |

  8. Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}]then prove ...

    Text Solution

    |

  9. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  10. Let p and q be real number such that x^(2)+px+q ne0 for every real num...

    Text Solution

    |

  11. Let A,B,C be three 3 xx 3 matrices with real enteries. If BA+BC+AC=1, ...

    Text Solution

    |

  12. If |z(1)|=|z(2)|=1"then prove that" [{:(,z(1),-z(2)),(,bar(z)(2),bar(z...

    Text Solution

    |

  13. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)...

    Text Solution

    |

  14. A=[(a,1,0),(1,b,d),(1,b,c)],B=[(a,1,1),(0,d,c),(f,g,h)],U=[(f),(g),(h)...

    Text Solution

    |

  15. If the system of equations x=cy+bz, y=az+cx and z=bx+ay has a non-zero...

    Text Solution

    |

  16. IfD=d i ag[d1, d2, dn] , then prove that f(D)=d i ag[f(d1),f(d2), ,f(...

    Text Solution

    |

  17. Fiven the matrix A= [[-1,3,5],[1,-3,-5],[-1,3,5]] and X be the solut...

    Text Solution

    |

  18. If q is a characteristic root of an singular matrix A, then prove that...

    Text Solution

    |

  19. If there are three square matrix A, B, C of same order satisfying the...

    Text Solution

    |

  20. If A is non-singular matrix satifying AB-BA=A, then prove that det(B+I...

    Text Solution

    |