Home
Class 12
MATHS
For each of the following initial value ...

For each of the following initial value problems verify that the accompanying functions is a solution. (i) `x(dy)/(dx)=1,\ y(1)=0 => y=logx` (ii) `(dy)/(dx)=y ,\ y(0)=1 => y=e^x` (iii) `(d^2y)/(dx^2)+y=0,\ y(0)=0,\ y^(prime)(0)=1 => y=sinx` (iv) `(d^2y)/(dx^2)-(dy)/(dx)=0,\ y(0)=2,\ y^(prime)(0)=1 => y=e^x+1` (v) `(dy)/(dx)+y=2,\ y(0)=3 => y=e^(-x)+2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For each of the following differential equations verify that the accompanying functions a solution. (i) x(dy)/(dx)=y => y=a x (ii) x+y(dy)/(dx)=0 => y=+-sqrt(a^2-x^2) (iii) x(dy)/(dx)y+y^2 => y=a/(x+a) (iv) x^3(d^2y)/(dx^2)=1 => y=a x+b+1/(2x) (v) y=((dy)/(dx))^2 => y=1/4(x+-a)^2

For each of the following differential equations verify that the accompanying functions a solution. Differential Function (a) x(dy)/(dx)=y, y=a x (b) x+y(dy)/(dx)=0, y=+-sqrt(a^2-x^2) (c) x(dy)/(dx)y=y^2, y=a/(x+a) (d) x^3(d^2y)/(dx^2)=1, y=a x+b+1/(2x) (e) y=((dy)/(dx))^2, y=1/4(x+-a)^2

For each of the following differential equations verify that the accompanying functions a solution.Differential Function x(dy)/(dx)=yy=axx+y(dy)/(dx)=0y=+-sqrt(a^(2)-x^(2))x(dy)/(dx)y=y^(2)y=(a)/(x+a)x^(3)(d^(2)y)/(dx^(2))=1y=ax+b+(1)/(2x)y=((dy)/(dx))^(2)y=(1)/(4)(x+-a)^(2)

Solve the following initial value problem: (dy)/(dx)=2e^x y^3,\ y(0)=1/2

Solve the following initial value problems: (dy)/(dx)=1+x+y^2+xy^2 , y(0)=0

Solve the following initial value problem: (dy)/(dx)+2y=e^(-2x)sinx ,\ y\ (0)=0

Solve the following initial value problems : y e^(y)dx=(y^(3)+2x e^(y))dy, y(0)=1 .

Solve the following initial value problem: (dy)/(dx)=2e^(2x)y^(2),y(0)=1

Solve the following initial value problems: e^xsqrt(1-y^2)dx+(y//x)dy=0 , y(0)=1

Solve the following initial value problem: (x+1)(dy)/(dx)=2e^(-y)-1,y=(0)=0