Home
Class 10
MATHS
" If "tan theta+sec theta=1," then prove...

" If "tan theta+sec theta=1," then prove that "sec theta=(l^(2)+1)/(2l)

Promotional Banner

Similar Questions

Explore conceptually related problems

if tan theta+sec theta=l then prove that sec theta=(l^(2)+1)/(2l)

if tan theta+sec theta=l then prove that tan theta=(l^(2)+1)/(2l)

If sec theta=x+(1)/(4x), then prove that sec theta+tan theta=2x or (1)/(2x)

(tan theta+sec theta-1)/(tan theta-sec theta+1)

( tan theta)/( sec theta -1)-(tan theta )/( sec theta + 1)=

Prove that (tan theta+ sin theta)/(tan theta-sin theta)= (sec theta+1)/(sec theta-1) OR Prove that (cosec theta- cot theta)^(2)=(1-cos theta)/(1+cos theta)

prove that (tan theta) / (sec theta -1) = (tan theta + sec theta + 1) / (tan theta + sec theta - 1)

If sec theta=x+(1)/(4x), prove that :sec theta+tan theta=2x or ,(1)/(2x)

l tan theta+m sec theta=n,l'tan theta-m'sec theta=n' Prove [(nl'-ln')/(ml'+m'l)]^(2)=1+[(m'n+mn')/(lm'+l'm)]^(2)

prove that 1+tan theta tan2 theta=sec2 theta