Home
Class 12
MATHS
lim(n to oo) (3^(n)+4^(n))^(1//n) is eq...

`lim_(n to oo) (3^(n)+4^(n))^(1//n)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(nto oo)(3^(n)+4^(n))^((1)/(n))=

The value of lim_(n to oo) [(n!)/(n^(n))]^((1)/(n)) is equal to -

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(3^(n)+5^(n)+7^(n))^(1/n) is equal to

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo) ((4^(1/n)-1)/(3^(1/n)-1)) is equal to