Home
Class 12
MATHS
If u = e^(ax) sin bx and v = e^(ax)cos b...

If `u = e^(ax) sin bx and v = e^(ax)cos bx`, then what is `u (du)/dx +v (dv)/dx` equal to?

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=e^(ax)sinbx and v=e^(ax)cosbx . then what is u(du)/(dx)+v(dv)/(dx) equal to ?

e^(ax).sin^-1bx

e^(ax).sin^-1bx

The function u=e^xsinx and v=e^xcosx . The value of v(du)/(dx)-u(dv)/(dx) is-

inte^(ax)sin(bx+c)dx

integral (e^(ax)cos(bx+c))

Find derivative of y=e^(ax)cos bx

int e^(ax)cos(bx+c)dx

If u=inte^(ax)sin " bx dx" and v=int^(e^(ax))cos " bx dx" ,then tan^(-1)((u)/(v))+tan^(-1)((b)/(a)) equals