Home
Class 12
MATHS
If vec a , vec ba n d vec c are three ...

If ` vec a , vec ba n d vec c` are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a.` vec a+ vec b+ vec c` b. ` vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|)` c. ` vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2)` d. `| vec a| vec a-| vec b| vec b+| vec c| vec c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

If vec a,vec b and vec c are three mutually perpendicular vectors,then the vector which is equally inclined to these vectors is a.vec a+vec b+vec c b.(vec a)/(|vec a|)+(vec b)/(|vec b|)+(vec c)/(|vec c|) c.(vec a)/(|vec a|^(2))+(vec b)/(|vec b|^(2))+(vec c)/(|vec c|^(2))d|vec a|vec a-|vec b|vec b+|vec c|vec c

If vec a, vec b, vec c are mutually perpendicular unit vectors then |vec a + vec b + vec c| =

If vec a,vec b,vec c are mutually perpendicular unit vectors,find |2vec a+vec b+vec c|

If vec a , vec b , vec c are mutually perpendicular vectors of equal magnitude show that vec a+vec b+vec c is equally inclined to vec a , vec b , vec c .

If vec a and vec b and vec c are mutually perpendicular unit vectors,write the value of |vec a+vec b+vec c|

If vec a,vec b,vec c are mutually perpendicular vectors of equal magnitude,show the vectors vec a+vec b+vec c is equally inclined to vec a,vec b and vec c.

If vec a, vec b ,vec c are mutually perpendicular vectors of equal magnitudes, show that the vector vec a+ vec b + vec c is equally inclined to vec a, vec b and vec c .

If vec a , vec b ,a n d vec c are there mutually perpendicular unit vectors and vec d is a unit vector which makes equal angles with vec a , vec b ,a n d vec c , the find the value off | vec a+ vec b+ vec c+ vec d|^2dot

If vec A, vec B and vec C are mutually perpendicular vectors, then find the value of vec A. vec (B + vec C) .