Home
Class 12
MATHS
if phi(x)=cosx-int0^x(x-t)phi(t)dt. Then...

if `phi(x)=cosx-int_0^x(x-t)phi(t)dt`. Then find the value of `phi''(x)+phi(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If phi (x) = cos x - int_0^(x) (x-t) phi (t) dt , then the value of phi^('')(x) + phi (x) =

phi(x)=int_(1/x)^( sqrt(x))sin(t^(2))dt, then find the value of phi'(1)

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).

If f(x) =int_(x)^(x^2) (t-1)dt, 1 le x le 2 then the greatest value of phi (x) , is

Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(x)|=|f(x)|+|phi(x)| are :

Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(x)|=|f(x)|+|phi(x)| are :