Home
Class 12
MATHS
lan^(-1)(x)/(2)+lan^(-1)(x)/(3)=(pi)/(4)...

lan^(-1)(x)/(2)+lan^(-1)(x)/(3)=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=(pi)/(4) , |x| lt 1

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (A) (pi)/(2)(B)(pi)/(3)(C)(pi)/(4)(D)(pi)/(4) or 3(pi)/(4) is (A) (pi)/(2)(B)

If tan^(-1)((x-3)/(x-4))+tan^(-1)((x+3)/(x+4))=(pi)/(4)

Prove that tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (pi)/(4) and Not(-3 pi)/(4)

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)