Home
Class 12
MATHS
" (ii) "1+i^(10)+i^(1i6)+i^(000)...

" (ii) "1+i^(10)+i^(1i6)+i^(000)

Promotional Banner

Similar Questions

Explore conceptually related problems

1+i^(10)+i^(110)+i^(1000)

1+i^(10)+i^(110)+i^(1000)

Prove that: (i) 1+i^(2)+i^(4)+i^(6)=0 (ii) 1+i^(10)+i^(100)+i^(1000)=2 (iii) i^(104)+i^(109)+i^(114)+i^(119)=0 (iv) 6i^(54)+5i^(37)-2i^(11)+6i^(68)=7i (v) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))=-1

Find the values of following expressions: i^(49)+i^(68)+i^(89)+i^(110) (ii) i^(30)+i^(80)+i^(120) (iii) i^+i^2+i^3+i^4 (iv) i^5+i^(10)+i^(15) (v) (i^(592)+i^(590)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(576)+i^(574)) (vi) 1+i^2+i^4+i^6+i^8+doti^(20) (vii) (1+i)^6+(1-i)^3

1 + i^(2n) + i^(4n) + i^(6n)

What is the value of 1+i^(2)+i^(4)+i^(6)+...+i^(100) where i=sqrt(-1)

(1-i)^6+(1-i)^3=

Prove that: (i) (1-i)^(2)=-2i (ii) (1+i)^(4)xx(1+(1)/(i))^(4)=16 (iii) {i^(19)+((1)/(i))^(25)}^(2)=-4 (iv) i^(4n)+i^(4n+1)+i^(4n+2)+i^(4n+3)=0 (v) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)=1+4i .