Home
Class 10
MATHS
" (iii) "2sin^(2)A+cos^(4)A=1+sin^(4)A...

" (iii) "2sin^(2)A+cos^(4)A=1+sin^(4)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 2 sin^(2) A + cos^(4) A = 1 + sin^(4) A

Prove the following identities: sin^(4)A+cos^(4)A=1-2sin^(2)A cos^(2)A

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

Prove the following identities : (1 - 2 sin^(2) A)^(2)/(cos^(4) A - sin^(4) A) = 2 cos^(2) A - 1

2sin ^ (2) A + cos ^ (4) A-1 + sin ^ (4) 4

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove that sec^(2)A-((sin^(2)A-2sin^(4)A)/(2cos^(4)A-cos^(2)A))=1

Solev (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Prove the following identities: sin^4A-cos^4A=sin^2A-cos^2A=2sin^2A-1=1-2cos^2A