Home
Class 12
MATHS
" 1."int2^(x)*e^(x)dx...

" 1."int2^(x)*e^(x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1+2x)e^(x+x^2)dx

" 1."int x^(2)e^(x^(3))dx" is equal to "

If I_(1) = int_e^(e^(2)) (dx)/(log x) and I_(2) = int_1^(2) (e^(x)dx)/(x) then

prove it 2e^(-1/4) < int_0^2e^(x^2-x)dx < 2e^2

If int_0^1e^-(x^2)dx=a , then find the value of int_0^1x^2e^-(x^2)dx in terms of a .

If a >0 and a!=1 evaluate the following integrals: inte^x\ a^x\ dx (ii) int2^((log)_e x)\ dx

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

int_(0)^(1)x^2e^(2x)dx

int_0^1 x^2 e^(2x) dx