Home
Class 12
MATHS
(dy)/(dx) =y ((e^(3x)-e^(-3x))/(e^(3x) +...

`(dy)/(dx) =y ((e^(3x)-e^(-3x))/(e^(3x) +e^(-3x)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(3x)-e^(-3x))/(e^(3x)+e^(-3x))dx

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

int(dx)/(e^(3x)+e^(-3x))=

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

Solve: (dy)/(dx)=1/(sin^4x+cos^4x) (ii) (dy)/(dx)=(3e^(2x)+3e^(4x))/(e^x+e^(-x))

(dy)/(dx) + 3y = e^(-2x)

(dy)/(dx) + 3y = e^(-2x)

(dy)/(dx) = e^(2x-y) + x^(3) e^(-y)