Home
Class 10
MATHS
" If "P=sec A+tan A," then prove that "s...

" If "P=sec A+tan A," then prove that "sin A=(p^(2)-1)/(p^(2)+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec A + tan A = p, show that : sin A = (p^(2) - 1)/(p^(2) + 1)

If sec theta+tan theta=p, prove that sin theta=(p^(2)-1)/(p^(2)+1)

If sin theta+tan theta=P then prove that (p^(2)-1)/(p^(2)+1)=sin theta

If sec theta+tan theta =p then prove that (p^2-1)/(p^2+1)=sin theta

If sin A + cos A = p and sec A + cosec A = q , then prove that : q(p^(2) - 1) = 2 p

If sec theta+tan theta=p,quad show that (p^(2)-1)/(p^(2)+1)=sin theta

If the line ax+by=1 passes through the point of intersection of y=x tan alpha+p sec alpha,y sin(30^(@)-alpha)-x cos(30^(@)-alpha)=p and is inclined at 30^(@) with y=tan alpha x, then prove that a^(2)+b^(2)=(3)/(4p^(2))

If sin theta + cos theta = p and sec theta + "cosec"theta = q , then prove that q(p^(2)-1) = 2p .

If sec theta + tan theta = p , prove that (i) sec theta =(1)/(2)(p+(1)/(p)) " (ii) "tan theta =(1)/(2)(p-(1)/(p)) " (iii) " sin theta =(p^(2)-1)/(p^(2)+1).

If x=p sec theta+q tan theta&y=p tan theta+q sec theta then prove that x^(2)-y^(2)=p^(2)-q^(2)