Home
Class 10
MATHS
[" Qus ",(x)/(a)+(y)/(b)=a+b],[,(x)/(a^(...

[" Qus ",(x)/(a)+(y)/(b)=a+b],[,(x)/(a^(2))+(y)/(h^(2))=2]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (x)/(a)+(y)/(b)=a^(2)+b^(2) and (x)/(a^(2))+(y)/(b^(2))=a+b

(x)/(a)+(y)/(b)=a^(2)+b^(2) and (x)/(a^(2))+(y)/(b^(2))=a+b

2(x/a)+(y/b)=2; (x/a)-(y/b)=4

{:((a^(2))/(x) - (b^(2))/(y) = 0),((a^(2)b)/(x)+(b^(2)a)/(y) = "a + b, where x, y"ne 0.):}

{:((a^(2))/(x) - (b^(2))/(y) = 0),((a^(2)b)/(x)+(b^(2)a)/(y) = "a + b, where x, y"ne 0.):}

If the origin is shifted to the point ((a b)/(a-b),0) without rotation, then the equation (a-b)(x^2+y^2)-2a b x=0 becomes (A)(a-b)(x^2+y^2)-(a+b)x y+a b x=a^2 (B)(a+b)(x^2+y^2)=2a b (C)(x^2+y^2)=(a^2+b^2) (D)(a-b)^2(x^2+y^2)=a^2b^2

In sin (A+iB)=x+iy show that (x^2)/(sin^2A)-(y^2)/(cos^2A)=1 and (x^2)/(cos h^2B)+(y^2)/(sin h^2B)=1

If a/b = x/y , then show that (a+b) (a^(2)+b^(2))x^(3) = (x+y)(x^(2)+y^(2))a^(3)