Home
Class 12
MATHS
If cos(A+B)sin(C+D)=cos(A-B)sin(C-D), pr...

If `cos(A+B)sin(C+D)=cos(A-B)sin(C-D)`, prove that `cot A cot B cot C=cotD`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C= cot D.

If cos (A+B) sin (C+D)= cos(A-B)* sin(C-D), then cot A cot B cot C =

Statement:1 If cos(A+B)sin( C +D) = cos(A-B) sin(C-D) , then the values of cotAcotBcotC is cotD. And Statement:2: If cos(A+B) sin(C+D)= cos(A-B) sin(C-D) then the value of tanAtanBtanC is tanD.

Statement:1 If cos(A+B)sin( C +D) = cos(A-B) sin(C-D) , then the values of cotAcotBcotC is cotD. And Statement:2: If cos(A+B) sin(C+D)= cos(A-B) sin(C-D) then the value of tanAtanBtanC is tanD.

(cos(A+B))/(cos(A-B))+(cos(C-D))/(cos(C+D))=0rArr cot A cot B cot C=

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in A.P.

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in AP

(cos(A+B))/(cos(A-B))+(cos(C-D))/(cos(C+D))=0rArr cot A cot B cot C cot D=

sin(B+C-A),sin(C+A-B),sin(A+B-C)sin(B+C-A),sin(C+A-B),sin(A+B-C) are A.P., then cot A,cot B,cot C are in GP(b)HP(c)AP(d) none of these