Home
Class 12
MATHS
" If "y=a sin mx+b cos mx," then "(d^(2)...

" If "y=a sin mx+b cos mx," then "(d^(2)y)/(dx^(2))" is equ al to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a sin mx+b cos mx, then (d^(2)y)/(dx^(2)) is equal to -m^(2)y(b)m^(2)y(c)my(d)my

If y =a cos mx + b sin mx, then (d ^(2)y)/(dx ^(2))=

If y= sin mx , then (d^(2)y)/(dx^(2)) + m^(2)y=

If y= sin mx , then (d^(2)y)/(dx^(2)) + m^(2)y=

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If y=ae^(mx)+be^(-mx) then (d^(2)y)/(dx^(2)) is

If y = ae^(mx) + be^-(mx) , then (d^2y)/(dx^2) =

If y=A sin mx+B cos mx, then prove that (d^(2)y)/(dx^(2))+m^(2)y=0

If y=ae^(mx)+be^(-mx) then (d^2y)/(dx^2) is

If y=ae^(mx)+be^(-mx) , then (d^2y)/dx^2-m^2y is equals to (a). m^2(ae^(mx)-be^(mx)) (b).1 (c).0 (d).None of these