Home
Class 13
MATHS
" (b) "log(3)(3^(x)-8)=2-x...

" (b) "log_(3)(3^(x)-8)=2-x

Promotional Banner

Similar Questions

Explore conceptually related problems

(iii) log_(3)(3^(x)-8)=2-x

Solve log_(3)(3^(x)-8)=2-x

If 1,log_(81)(3^(x)+48)" and "log_(9)(3^(x)-(8)/(3)) are in A.P., then find x

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If log_(3) ( 3 + x) + log_(3) (8 - x) - log_(3) ( 9x - 8) = 2 - log_(3) 9, then x =

Solve for x:(a) log_(0.3)(x^(2)+8) gt log_(0.3)(9x) , b) log_(7)( (2x-6)/(2x-1)) gt 0

Solve for x:(a) log_(0.3)(x^(2)+8) gt log_(0.3)(9x) , b) log_(7)( (2x-6)/(2x-1)) gt 0

A : (a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)((a-b)/(a))^(3)+....=log_(e)((a)/(b)) R : log_(e)(1-x)=-x-(x^(2))/(2)-(x^(3))/(3)-(x^(4))/(4)-....

The number of solutions of the equation log_(x-3)(x^(3)-3x^(2)-4x+8)=3 is