Home
Class 12
MATHS
" the line "x=alpha" divides the area of...

" the line "x=alpha" divides the area of the region "R={(x,y)in R^(2):x^(3)<=y<=x,0<=x<=1}" into two equal parts,then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(3) le y le x, 0 le x le 1} into two equal parts, then

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

If the line x=alpha divides the area of region R={(x,y)in R^(2):x^(3)<=x,0<=x<=1} into equal parts,then: 2 alpha^(4)-4 alpha^(2)+1=0alpha^(4)+4 alpha^(2)-1=00

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(0) le y le x, 0 le x le 1} into two equal parts, then

The area of the region R={(x,y)//x^(2)le y le x} is

The area of the region R={(x,y)//x^(2)le y le x} is

The area of the region R={(x,y):|x|<=|y| and x^(2)+y^(2)<=1} is

The area of the region R={(x,y):|x| le|y| and x^2+y^2le1} is

The area of the region R={(x,y):|x| le|y| and x^2+y^2le1} is