Home
Class 10
MATHS
Given that sin A=(sqrt(3))/(2) and cos B...

Given that `sin A=(sqrt(3))/(2)` and `cos B=0` then find the value of `B-A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let sin a+sin b==(sqrt(2))/(2) and cos a+cos b=(sqrt(6))/(2) Then the value of 4sin^(2)(a+b) is less than

If sin (A+B) =1 and cos (A-B) = (sqrt(3))/(2) , then find the values of A and B.

Given that sin(A+B)=sin A cos B+cos A sin B, find the value of sin75o.

If cos (A+B) =0 and sin (A-B) = (sqrt(3))/(2) then calculate the value of A.

If cos(A+B)=0andsin(A-B)=(sqrt(3))/(2) then find the value of tan(A-3B) .

If cos(A+B)=0andsin(A-B)=(sqrt(3))/(2) then find the value of tan(A-3B) .

if sin A=(1)/(2) and cos B=(sqrt(3))/(2) find the following

If sin A=sin B and cos A=cos B, then find the value of A in terms of B.

IF cos B = (3)/(sqrt(13)) and A + B = 90 ^(@) find the value of sin A .