Home
Class 11
PHYSICS
If vec(A) = 2 I + j - k , vec(B) = I + 2...

If `vec(A) = 2 I + j - k , vec(B) = I + 2 j + 3 k` , and `vec(C ) = 6 i - 2 j - 6 k`,then the angle between `(vec(A) + vec(B))` and `vec(C )` will be

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a = i +j and vec b = j-k then the angle between vec a + vec b and vec a - vec b is

vec(a)= -i+j+2k , vec(b)=2i-j-k and vec(c)=-2i+j+3k ,then the angle between 2vec(a)-vec(c) and vec(a)+vec(b) is

If vec a= 2 hat i+ 3 hat j+ 6 hat k , vec b= 3 hat i- 6 hat j+ 2 hat k and vec c= 6 hat i+ 2 hat j- 3 hat k then compute vec b * vec c and vec a* vec b . Hence evaluate vec a*(vec b* vec c) and also (vec a* vec b)* vec c .

If vec a = 3i -2j + 2k, vec b = 6i-4j-2k and vec c = 3i-2j -4k , then vec a . (vec b xx vec c) is

If | vec a | = 2, | vec b | = 7 and vec a xxvec b = 3vec i + 2vec j + 6vec k then vec a * vec b =

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

If vec a = hat i +2 hat j +hat k, vec b= 3 hat i +2 hat j- 7hat k and vec c = 5 hat i +6 hat j -5hat k . show that vec a, vec b and vec c are coplanar.

If vec a = 2i+3j-4k, vec b = i + j +k and vec c = 4i+2j+3k , then |vec a xx (vec b xx vec c)| =