Home
Class 12
MATHS
f(x)=(10cosx+5cos3x+cos5x)/(cos6x+6cos4x...

`f(x)=(10cosx+5cos3x+cos5x)/(cos6x+6cos4x+15cos2x+10),` then find the value of `(0)+f'(0)+f'(0).`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(10cos x+5cos3x+cos5x)/(cos6x+6cos4x+15cos2x+10) then find the value of (0)+f'(0)+f'(0)

If f(x)=int(sin2x(cos2x-cos4x))/(cos2x(cos2x+cos4x))dx then the value of f((pi)/(3))-f(0) is

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

lim_(x to 0) (cos5x-cos7x)/(cosx-cos5x)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

Let f(x) = |{:(secx,cosx,sec^(2)x+cotx cosecx),(cos^(2)x,cos^(2)x,cosec^(2)x),(1,cos^(2)x,cos^(2)x):}| then find the value of f_(0)^(pi//2) f(x) dx.