Home
Class 12
MATHS
If |z1| = 1,|z2| = 2, then value of |z1+...

If `|z_1| = 1,|z_2| = 2,` then value of `|z_1+z_2|^2+|z_1-z^2|^2` is equal to;

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1|=1,|z_2|=1 then prove that |z_1+z_2|^2+|z_1-z_2|^2 =4.

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=1, |z_2| = 2, |z_3|=3 and |9z_1 z_2 + 4z_1 z_3+ z_2 z_3|=12 , then the value of |z_1 + z_2+ z_3| is equal to

If |z_1|=|z_2|=1 , then |z_1+z_2| =