Home
Class 10
MATHS
(a^(2))/(ax-1)+(b)/(bx-1)=a+b,x!=(1)/(a)...

(a^(2))/(ax-1)+(b)/(bx-1)=a+b,x!=(1)/(a),

Promotional Banner

Similar Questions

Explore conceptually related problems

(a)/(ax-1)+(b)/(bx-1)=a+b,x!=(1)/(a),(1)/(b)

Solve for x:(a)/(ax-1)+(b)/(bx-1)=a+b;x!=(1)/(a),(1)/(b)

Solve each of the following quadratic equations: (a)/((ax-1))+(b)/((bx-1))=(a+b),xne(1)/(a),(1)/(b)

Solve for x: a/(ax-1)+b/(bx-1)=a+b; x!= 1/a, 1/b

Solve: a/(ax-1)+b/(bx-1)=a+b (x!=1/a,1/b) .

The value of the expression (1-ax)(1+ax)^(-1)(1+bx)^((1)/(2))(1-bx)^(-(1)/(2)) at x=a^(-1)(2(a)/(b)-1)^((1)/(2)), is: a.dependent on both a and b b.1 c.;-1

The value of the expression (1-ax)(1+ax)^(-1)(1+bx)^((1)/(2))(1-bx)^(-(1)/(2)) at x=a^(-1)(2(a)/(b)-1)^((1)/(2))

If lim_(x to 1) (ax^(2)+bx+c)/((x-1)^(2))=2 , then (a, b, c) is

if the roots of the equation (x-a)/(ax-1)=(x-b)/(bx+1) are reciprocal to each other.then a.a=1 b.b=2 c.a=2b d.b=0

If (1)/((a^(2)-bx)(b^(2)-ax))=(A)/(a^(2)-bx)+(B)/(b^(2)-bx) , then the value of A and B respectively would be _________.