Home
Class 12
MATHS
Let z1=((1+sqrt(3)i)^2(sqrt(3)-i))/(1-i)...

Let `z_1=((1+sqrt(3)i)^2(sqrt(3)-i))/(1-i) and z_2=((sqrt(3)+i)^2(1-sqrt(3)i))/(1+i)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(3)+i)/((1+i)(1+sqrt(3)i))|=

((1+sqrt(3)i)/(1-sqrt(3)i))^(181) + ((1-sqrt(3)i)/(1+sqrt(3)i))^(181) is equal to ______________

The value of ((1+sqrt(3)i)/(1-sqrt(3)i))^(64)+((1-sqrt(3)i)/(1+sqrt(3)i))^(64) is

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=

Let z_(1)=(2sqrt(3)+ i6sqrt(7))/(6sqrt(7)+ i2sqrt(3))" and "z_(2)=(sqrt(11)+ i3sqrt(13))/(3sqrt(13)- isqrt(11)) . Then |(1)/(z_1)+(1)/(z_2)| is equal to

the value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6) is

The area of triangle with vertices (sqrt(3)+i)z,(-3+sqrt(3)i)z and (sqrt(3)-3+(sqrt(3)+1)i)z is 48 then |z|=

The value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6)=

If z(2-2sqrt(3i))^(2)=i(sqrt(3)+i)^(4), then arg(z)=