Home
Class 12
MATHS
[" (a) Let "1=int(e^(x))/(e^(4x)+e^(2x)+...

[" (a) Let "1=int(e^(x))/(e^(4x)+e^(2x)+1)dx,quad J=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx],[" Then,for an arbitrary constant "C," the value of "J-1" equals "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I = int (e^x)/(e^(4x)+e^(2x)+1)dx, J=int (e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then , for an arbitrary constant c, the value of J-1 euqals :

Let I =int(e^(x))/(e^(4x)+e^(2x)+1)dx , J = int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then for an arbitary constant C, the value of I - J equals

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

If I=int(e^(x))/(e^(4x)+e^(2e)+1)dx.J=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx Then for an arbitrary constant c, the value of J-I equal to

If I=int(e^x)/(e^(4x)+e^(2e)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

int(e^(2x) -1)/(e^(2x) + 1) dx

int(e^(x))/((1+e^(x))(2+e^(x)))dx