Home
Class 11
MATHS
int e^(n)sin e^(n)dn...

int e^(n)sin e^(n)dn

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x)" sin "e^(x)dx

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

Evaluate int_(0)^(infty)e^(-x) sin^(n) x dx, if n is an even integer.

Evaluate int_(0)^(infty)e^(-x) sin^(n) x dx, if n is an even integer.

If I_(n) = int x^(n) e^(-x) dx prove that I_(n) = -x^(n) e^(-x) + nI_(n-1)

If l_(n)=int e^(mx)cos^(n)xdx then prove that (m^(2)+n^(2))I_(n)=e^(mx)*(m cos x+n sin x)cos^(n-1)x+n(n-1)l_(n)

If I_(n) = int x^(-n) e^(ax) dx then prove that I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)

If I_(n) = int x^(-n) e^(ax) dx then prove that I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)

int e ^ (x) sin e ^ (x) dx