Home
Class 11
MATHS
Prove that: (sin(A-C)+2sinA+sin(A+C))/...

Prove that:
`(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C))=(sinA)/(sinB)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to-

Prove that a sinA - b sinB = c sin(A-B)

Prove that (sin(B-C))/(sinB.sinC) + (sin(C-A))/(sinCsinA) + (sin(A-B))/(sinA.sinB) = 0

Prove that: sin(A+2B)sinA-sinBsin(2A+B)sinB=sin(A+B)sin(A-B)

Prove that: sin(A+2B)sinA-sinBsin(2A+B)sinB=sin(A+B)sin(A-B)

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sinA/2 sinB/2sinC/2

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)