Home
Class 9
MATHS
" Prove that "(2^(x-1)+2^(x))/(2^(x+1)-2...

" Prove that "(2^(x-1)+2^(x))/(2^(x+1)-2^(x))=(3)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x cos^(-1)x)/(sqrt(1-x^(2)))-log sqrt(1-x^(2)), then prove that (dy)/(dx)=(co^(1-x)x)/((1-x^(2))^((3)/(2)))

If ((x+i)^(2))/(3x+2)=a+ib, then prove that ((x^(2)+1)^(2))/((3x+2)^(2))=a^(2)+b^(2)

prove that lim_(x rarr1)(x^(3)-1)/(x^(2)-1)=(3)/(2)

For x>0 Prove that x-(x^(2))/(2)

Prove that , tan^(-1)((2 sin 2x)/(1+2 cos 2x))-(1)/(2)sin^(-1)((3 sin 2x)/(5+4 cos 2x))=x .

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that :log_(e)((x+1)/(x))=2[(1)/((2x+1))+(1)/(3(2x+1)^(3))+(1)/(5(2x+1)^(5))+...]