Home
Class 12
MATHS
Let S denote the set of all polynomials ...

Let `S` denote the set of all polynomials `p(x)` of degree `le 2` such that `p(1)=1,P(0)=0 and P'(x) gt 0 AA x in [0,1],` then `S=phi` b. `S={(1-a)x^2+ax;0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S denote the set of all polynomials P(x) of degree lt=2 such that P(1)=1 , P(0)=0 and P^(prime)(x)>0,AA a epsilonR [0,1] , then

Let S denote the set of all polynomials P(x) of degree lt=2 such that P(1)=1,P(0)=0a n dP^(prime)(x)>0AAx in [0,1] , then S=varphi b. S={(1-a)x^2+a x ;0

Let S denote the set of all polynomials P(x) of degree lt=2 such that P(1)=1,P(0)=0a n dP^(prime)(x)>0AAx in [0,1] , then S=varphi b. S={(1-a)x^2+a x ;0

Let S denote the set of all polynomials P(x) of degree lt=2 such that P(1)=1,P(0)=0a n dP^(prime)(x)>0AAx in [0,1] , then S=varphi b. S={(1-a)x^2+a x ;0

Let S denote the set of all polynomials P(x) of degree lt=2 such that P(1)=1,P(0)=0a n dP^(prime)(x)>0AAx in [0,1] , then S=varphi b. S={(1-a)x^2+a x ;0

Let S denote the set of all polynomials P(x) of degree lt=2 such that P(1)=1,P(0)=0a n dP^(prime)(x)>0AAx in [0,1] , then S=varphi b. S={(1-a)x^2+a x ;0

Let S denote the set of all polynomials P(x) of degree lt=2 such that P(1)=1,P(0)=0a n dP^(prime)(x)>0AAx in [0,1] , then (a)S=varphi (b)S={(1-a)x^2+a x ;0< a <2} (c)S={(1-a)x^2+a x ;0< a <1} (d)S={(1-a)x^2+a x ;0< a < oo}

Let S denote the set of all polynomials p(x) of degree 0AA x in[0,1] then S=phi b.S={(1-a)x^(2)+ax;0

If P (x) is a polynomial of degree less than or equal to 2 and S is the set of all such polynomials so that P (0) =0, P (1) =1, and P'(x) gt 0 AA x in [0.1], then