Home
Class 12
MATHS
Number of integer elements in range of t...

Number of integer elements in range of the function `f:(-oo,1)rarr R` defined by `f(x)=[9^(x)-3^(x)+1]` ,`[.]`denotes greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=[4^(x)+2^(x)+1] (where [.] denotes greatest integer function) is

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Find the inverse of the function: f:Z to Z defined by f(x)=[x+1], where [.] denotes the greatest integer function.

If f:(3,4)rarr(0,1) defined by f(x)=x-[x] where [x] denotes the greatest integer function then f(x) is

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

Let f:R rarr A defined by f(x)=[x-2]+[4-x], (where [] denotes the greatest integer function).Then

If f:Irarr I be defined by f(x)=[x+1] ,where [.] denotes the greatest integer function then f(x) is equal to

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function: