Home
Class 12
MATHS
Let f(x) be maximum and g(x) be minimum ...

Let f(x) be maximum and g(x) be minimum of `{x|x|, x^(2)|x|}` then `int_(-1)^(1)[f(x)-g(x)]dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1 , then : int_(0)^(pi)[f(x)+g(x)]dx=

int{f(x)g'(x)-f'g(x)}dx equals

f and g be two positive real valued functions defined on [-1,1] such that f(-x)=(1)/(f(x)) and g is an even function with int_(-1)^(1)g(x)dx = 1 then I = int_(-1)^(1)f(x)g(x)dx satisfies

f and g be two positive real valued functions defined on [-1,1] such that f(-x)=(1)/(f(x)) and g is an even function with int_(-1)^(1)g(x)dx=1 then I=int _(-1)^(1) f(x)g(x)dx satisfies

If f(x) and g(x) are continuous functions satisfying f(x) = f(a-x) and g(x) + g(a-x) = 2 , then what is int_(0)^(a) f(x) g(x)dx equal to ?

If g(1)=g(2), then int_(1)^(2)[f{g(x)}]^(-1)f'{g(x)}g'(x)dx is equal to

Let f(x)=minimum{|x|,1-|x|,(1)/(4)} for x varepsilon R then the value of int_(-1)^(1)f(x)dx is equal to

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx