Home
Class 12
MATHS
Let f(x) be maximum and g(x) be minimum ...

Let `f(x)` be maximum and `g(x)` be minimum of `(x|x|,x^(2)|x|}` then `int_(-1)^(1)[f(x)-g(x)]dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1 , then : int_(0)^(pi)[f(x)+g(x)]dx=

If g(1)=g(2), then int_(1)^(2)[f{g(x)}]^(-1)f'{g(x)}g'(x)dx is equal to

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

Evaluate: if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx

f and g be two positive real valued functions defined on [-1,1] such that f(-x)=(1)/(f(x)) and g is an even function with int_(-1)^(1)g(x)dx = 1 then I = int_(-1)^(1)f(x)g(x)dx satisfies

f and g be two positive real valued functions defined on [-1,1] such that f(-x)=(1)/(f(x)) and g is an even function with int_(-1)^(1)g(x)dx=1 then I=int _(-1)^(1) f(x)g(x)dx satisfies

If f(x) and g(x) are continuous functions satisfying f(x) = f(a-x) and g(x) + g(a-x) = 2 , then what is int_(0)^(a) f(x) g(x)dx equal to ?