Home
Class 12
MATHS
If A=[1tanx-tanx1], show that A^T A^(-1)...

If `A=[1tanx-tanx1],` show that `A^T A^(-1)=[cos2x-sin2xsin2xcos2x]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[1tan x-tan x1], show that A^(T)A^(-1)=[cos2x-sin2x sin2x cos2x]

If A=[[1,tan x-tan x,1]], show that A^(T)A^(-1)=[[cos2x,-sin2xsin2x,cos2x]]

If A=[(1,tanx),(-tanx, 1)], " show that " A' A^(-1)=[(cos 2x,-sin 2x),(sin 2x, cos 2x)] .

If y = {(1-tanx)/(1+tanx)} , show that (dy)/(dx) = (-2)/((1+sin2x)) .

If y=(1-tanx)/(1+tanx) , prove that (dy)/(dx)=(-2)/(1+sin2x) .

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

If A= [{:( 1,-tanx ),( tanx ,1):}] then the value of [A^(T) A^(-1) ] is

(1)/(sin x.cos^(2)x)

int(2tanx+3)/(sin^2x+2cos^2x)dx

Let P(x)=cot^(2)x ((1+tanx+tan^(2)x)/(1+cot x+ cot^(2)x))+((cos x-cos 3x+sin3x-sin x)/(2(sin 2x+cos2x)))^(2) . Then, which of the following is (are) correct ?