Home
Class 11
MATHS
COMPLEX NUMBERS | PROPERTIES OF ARGUMENT...

COMPLEX NUMBERS | PROPERTIES OF ARGUMENTS OF A COMPLEX NUMBER | `arg(z_1z_2)=arg(z_1)+arg(z_2)`, `arg(z^n)=n.argz` where `n in ZZ`, Angle between lines joining `z_1;z_2 and z_3;z_4`, `arg(z_1/z_2)=arg(z_1)-arg(z_2)`, `arg(barz)=-arg(z)`, `arg(1/barz)=arg((zbarz)/(barz))`, `arg(z/barz)=arg(z)-arg(barz)=2 arg(z)`, `z_1barz_2+barz_1z_2=2|z_1||z_2|cos(theta_1-theta_2)`, If z is purely imaginary ; then `arg(z)=pmpi/2`, If z is purely real ; then `arg(z)=0 or pi`, Locus of z ; if `arg(z)=theta` (=constant), Locus of z ; if `arg(z-a)=theta` (=constant) and `agt0`, Angles between two lines `alpha-beta`

Promotional Banner

Similar Questions

Explore conceptually related problems

arg((z)/(bar(z)))=arg(z)-arg(bar(z))

arg(z_(1)z_(2))=arg(z_(1))+arg(z_(2))

arg((z_(1))/(z_(2)))=arg(z_(1))-arg(z_(2))

If arg (bar(z)_(1))= "arg" (z_(2)), (z ne 0) then

arg(z) + arg(barz) (z != 0) is ………..

if z_1=1+isqrt3 , z_2=sqrt3-i show that (a)arg (z_1z_2)=arg(z_1)+arg(z_2) and (b) arg(z_1//z_2)=arg(z_1)-arg(z_2)

For any two complex numbers z1 and z2 ,prove that arg(z1.z2)=arg(z1)+arg(z2) .

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

If arg(z) = theta , then arg(bar z) =