Home
Class 12
MATHS
lim(x->k)[x]=...(k in Z)...

`lim_(x->k)[x]=...(k in Z)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to k^-) x-[x] , where k is an integer is………….

The value of lim_(xtok^(-))x-[x] , where k is an integer

Let f(x)=cos((x)/(2))*cos((x)/(4))*...*cos((x)/(2^(n))). If lim_(n rarr oo)f(x)=g(x) and lim_(x rarr0)g(x)=k then value of lim_(y rarr k)[(1-y^(2011))/(1-y)]

The value of lim_(x rarr k^(-)) x -[x] , where k is an integer, is

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

Evaluate lim_(x to 0) (k^([x]) - 1- |x| In K)/(x^(2)) , k gt 0

Evaluate lim_(x to 0) (k^([x]) - 1- |x| In K)/(x^(2)) , k gt 0

If lim_(x rarr 5)((x^k - 5^k)/(x - 5)) = 500 , then k is equal to