Home
Class 12
MATHS
lim(x->-1){[x]+|x|}=...

`lim_(x->-1){[x]+|x|}=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(3^x-1)/x

Write the value of (lim)_(x->1^-)x-[x]

lim_(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to:

lim_(x rarr-1)([x]+|x|). (where [.] denotes the greatest integer function)

Find the limits: (i) (lim)_(x->1)[x^3-x^2+1] (iii) (lim)_(x->3)[x(x+1)] (iii) (lim)_(x->1)[1+x+x^2+. . . . .+x^(10)]

Statement - 1: The function f(x) = {x}, where {.} denotes the fractional part function is discontinuous a x = 1 Statement -2: lim_(x->1^+) f(x)!= lim_(x->1^+) f(x)

Evaluate : lim_( x->1 ) ( x^2 + 2x + 3 )

lim_ (x rarr-1) [([x]) / (x)] =

Let Lim_(x rarr1)([x])/(x)=l and lim_(x rarr1)(x)/([x])=m where [ .] denotes the greatest integer function, then

(lim)_(x->-1)(x^(10)+x^5+1)/(x-1)