Home
Class 11
MATHS
If the pair of lines a x^2+2h x y+b y^2+...

If the pair of lines `a x^2+2h x y+b y^2+2gx+2fy+c=0` intersect on the y-axis, then prove that `2fgh=bg^2+c h^2`

Text Solution

Verified by Experts

Let the line intersect on y- axis at `p(0,y_(1))`.
Putting this point in the equation of straight lines , we get `by_(1)^(2)+2fy_(1)+c=0`
Above equation must have equal roots .
`:.4f^(2)-4bc=0`
or `f^(2)=bc`
Also , given equation represents pair of straight lines.
`:.abc+2fgh-af^(2)-bg^(2)-ch^(2)=0`
From (1) , putting the value of `f^(2)` in (2), we get
`2fgh=bg^(2)+ch^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the pair of lines ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 intersect on the y-axis then

If the straight lines ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 intersect on the X -axis,then

If the pair of lines ax^(2)+2hxy+by^(2)+2gx+2fy+c=0ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 intersect on the y -axis then b^(2)g^(2)=ch^(2)(b)abc=2fgh2fgh=bg^(2)+ch^(2)f^(2)=bc

If the equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 resents a pair of parallel lines then prove that

If the lines represented by ax^(2)+4xy+y^(2)+8x+2fy+c=0 interseet on Y -axis,then (f,c)=

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

If the equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents a pair of parallel lines, then