Home
Class 12
7*cos^(-1)(1-x^(2))/(1+x^(2))=...

7*cos^(-1)(1-x^(2))/(1+x^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

sin[cot^(-1)((2x)/(1-x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))]=

5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x)/(1-x^(2)))-tan^(-1)x=5pi , then x is equal to

5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x)/(1-x^(2)))-tan^(-1)x=5pi , then x is equal to

tan((1)/(2) sin ^(-1)""(2x)/(1+x^(2))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2))))=(2x)/(1-x^(2))(|x|ne 1)

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is

cos((1-x^(2))/(1+x^(2)))

The number of integers satisfying the inequality cos^(-1)(cos((x^(2)+3)/(x^(2)+1)))+tan(tan^(-1)((7-3x^(2))/(1+x^(2))))>=2