Home
Class 10
MATHS
If x=p sec theta+q tan theta & y=p tan t...

If `x=p sec theta+q tan theta & y=p tan theta+q sec theta` then prove that `x^2 - y^2 = p^2 - q^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a sec theta+b tan theta and y=a tan theta+b sec theta then prove that x^(2)-y^(2)=a^(2)-b^(2)

x = a sec theta + b tan theta and y= a tan theta + b sec theta. Prove that x^(2)-y^(2) = a^(2)-b^(2) .

If x=a sec theta+b tan theta and y=a tan theta+b sec theta, prove that: x^(2)-y^(2)=a^(2)-b^(2)

If a=x sec theta + y tan theta , b = x tan theta + y sec theta then x^(2)-y^(2)=

If x sec theta + y tan theta = a, x tan theta + y sec theta = b " then " a^(2)-b^(2) =

x=a sec^(3)theta tan theta,y=b tan^(3)theta sec theta then sin^(2)theta

x=a sec^(3)theta tan theta,y=b tan^(3)theta sec theta then sin^(2)theta=

If cos theta + sin theta = p and sec theta + cosec theta = q , prove that q (p^(2) - 1) = 2p .

If sin theta + cos theta = p and sec theta + "cosec"theta = q , then prove that q(p^(2)-1) = 2p .