Home
Class 12
MATHS
" (i) "|[cos theta,-sin theta],[sin thet...

" (i) "|[cos theta,-sin theta],[sin theta,cos theta]|

Promotional Banner

Similar Questions

Explore conceptually related problems

" (1) "|[cos theta,-sin theta],[sin theta,cos theta]|

Find the value of |[cos theta,-sin theta],[sin theta,cos theta]|

Evaluate |[cos theta, -sin theta], [sin theta, cos theta]|

Evaluate the following determinants: (b) |(cos theta, -sin theta),(sin theta, cos theta)| = cos theta (cos theta) - sin theta(-sin theta) = cos^(2) theta + sin^(2) theta = 1

If A= [[cos theta,-sin theta],[sin theta,cos theta]] ,then Adj A is (a) [[cos theta,-sin theta],[cos theta,sin theta]] (b) [[1,0],[0,1]] (c) [[cos theta,sin theta],[-sin theta,cos theta]] (d) [[-1,0],[0,-1]]

Find the matrix A , when A^(-1) = [[cos theta, sin theta],[-sin theta,cos theta]]

If A = [[cos theta, sin theta],[-sin theta, cos theta]] , then what is A^(-1) ?

The inverse of A=[[cos theta, sin theta],[-sin theta,cos theta]] is :

By matrix multiplication from that M=[[cos theta,-sin theta],[sin theta,cos theta]] is orthogonal.

Prove the orthogonal matrices of order two are of the form [(cos theta,-sin theta),(sin theta,cos theta)] or [(cos theta,sin theta),(sin theta,-cos theta)]