Home
Class 11
MATHS
In A B C , the coordinates of B are (0,...

In ` A B C ,` the coordinates of `B` are `(0,0),A B=2,/_A B C=pi/3,` and the middle point of `B C` has coordinates `(2,0)dot` The centroid o the triangle is
(a)`(1/2,(sqrt(3))/2)` (b) `(5/3,1/(sqrt(3)))` (c) `(4+(sqrt(3))/3,1/3)` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(3)-(1)/(sqrt(3)))^(2) simplifies to (3)/(4)(b)(4)/(sqrt(3))(c)(4)/(3) (d) None of these

The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these

Given b=2,c=sqrt(3),/_A=30^(0), then inradius of o+ABC is (sqrt(3)-1)/(2) (b) (sqrt(3)+1)/(2) (c) (sqrt(3)-1)/(4) (d) none of these

If A(1,p^(2)),B(0,1) and C(p,0) are the coordinates of three points,then the value of p for which the area of triangle ABC is the minimum is (1)/(sqrt(3))( b) -(1)/(sqrt(3))(1)/(sqrt(2)) (d) none of these

If y=|cos x|+|sin x|, then (dy)/(dx)atx=(2 pi)/(3) is (1-sqrt(3))/(2)(b)0(c)(1)/(2)(sqrt(3)-1) (d) none of these

In A B C , if the orthocentre is (1,2) and the circumcenter is (0, 0), then centroid of A B C) is (1/2,2/3) (b) (1/3,2/3) (2/3,1) (d) none of these

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/(2)) (b) ((2)/(3),(1)/(sqrt(3)))(c)((2)/(3),(sqrt(3))/(2)) (d) (1,(1)/(sqrt(3)))

The perimeter of the triangle formed by the points (0,0),(1,0) and (0,1) is 1+-sqrt(2) (b) sqrt(2)+1(c)3(d)2+sqrt(2)

The distance between the orthocentre and circumcentre of the triangle with vertices (1,2),\ (2,1)\ a n d\ ((3+sqrt(3))/2,(3+sqrt(3))/2) is a. 0 b. sqrt(2) c. 3+sqrt(3) d. none of these

If the sides of a right-angled triangle are in A.P., then the sines of the acute angles are 3/5,4/5 b. 1/(sqrt(3)),sqrt(2/3) c. 1/2,(sqrt(3))/2 d. none of these