Home
Class 10
MATHS
If sin^(4)theta-cos^(4)=k^(4), then sin^...

If `sin^(4)theta-cos^(4)=k^(4), then sin^(2)theta-cos^(2)theta` is __________.

Promotional Banner

Similar Questions

Explore conceptually related problems

"(i) "sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

If sin theta+cos theta=a, then sin^(4)theta+cos^(4)theta=

sin^(4) theta + cos ^(4) theta + 2sin^(2) theta cos ^(2) theta has value 1.