Home
Class 10
MATHS
Solve the following sub questions: in ...

Solve the following sub questions:
in `Delta` PQR, angle PQR = 90^(@) "seg" QS bot "hypotenuse" PR, PS = 16 , RS = 9 "find" QS

Promotional Banner

Topper's Solved these Questions

  • PYTHAGORAS THEOREM

    CHETAN PUBLICATION|Exercise ASSIGNMENT -3|1 Videos
  • PYTHAGORAS THEOREM

    CHETAN PUBLICATION|Exercise ASSIGNMENT -4|1 Videos
  • PYTHAGORAS THEOREM

    CHETAN PUBLICATION|Exercise PROBLEMS FOR PRACTICE|17 Videos
  • MODEL ACTIVITY SHEET

    CHETAN PUBLICATION|Exercise QUESTION|29 Videos
  • QUADRATIC EQUATIONS

    CHETAN PUBLICATION|Exercise ASSIGNMENT|12 Videos

Similar Questions

Explore conceptually related problems

In Delta PQR, angle PQR = 90^(@), "seg" QM bot hyp PR, PM = 16 and RM = 9 then QM…….

Solve the following sub questions: In Delat ACB , angle ACB = 90^(@) "seg" CD bot side AB, A - D - B "seg" DE bot side CB. "Show that" CD^(2) xx AC =AD xx AB xx DE

In the adjoining figure, angle PQR = 90^(@) "seg" QS bot side PR, PS = 4, PQ = 6. Find x,y and z.

Solve the following sub question in Delta ABD, angle BAD = 90^(@) seg AC bot hypo BD, B - C- D show that (i) AB^(2) = BC : BD (ii) AD^(2) = BD : CD

In the adjoining figure, angle QPR = 90^(@), "seg" PM bot hypotenuse QR, Q - M - R. If PM = 10, QM = 8 then find QR.

Solve the any one of following sub questions: In Delta PQR, "seg" PM "is a median" PM = 10 and PQ^(2) + PR^(2) = 328 "then find" QR

Solve any one of the followng questions : In Delta ADC, angle ADC = 90^(@) angle C = 45^(@) , AC = 8 sqrt 2 cm. "Find" AD .

In Delta PQR, angle Q = 90^(@), PQ = QR = 5 sqrt 2 PR = 10 "then" angle P…….

Solve the following sub question : in the adjoining figure, seg PS bat side QR. If PQ = a, PR = b QS = c and Rs = d then complete the following activity to prove that (a + b) (a - b) = (c + d) (c - d) Proof : In Delta PSQ angle PSQ = 90 ^(@) square^(2) = PS^(2) + square^(2) PS^(2) = square^(2) - square^(2) In Delta PSR, angle PSR = 90^(@) square^(2) = PS^(2) + square^(2) PS^(2) = square^(2) - square^(2) = square^(2) - square^(2) a^(2) - c^(2) = b^(2) - d^(2) a^(2) - b^(2) = C^(2) - d^(2) square xx square = square xx square