Home
Class 12
MATHS
" If "alpha" and "beta" are the roots of...

" If "alpha" and "beta" are the roots of "x^(2)=x+1" then value of "(alpha^(2))/(beta)-(beta^(2))/(alpha)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of equation 3x^(2)-4x+2=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are the roots of equation 6x^(2)+x-2=0 , find the value of (alpha)/(beta)+(beta)/(alpha) :

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha,beta are the roots of 2x^(2)+x+7=0 find the value of alpha^(2)beta+alpha beta^(2)

If alpha and beta are the roots of equation 2x^(2)-3x+5=0 then find the value of alpha^(2)beta+beta^(2)alpha

If alpha and beta are the roots of the equation x^2 + 2x +8=0 then the value of (alpha)/(beta) + (beta)/(alpha) is ………………….. .

If alpha,beta are the roots of x^(2)-px+q. Find the value of the following: (alpha)/(beta)+(beta)/(alpha)