Home
Class 10
MATHS
If sin(θ+α)=cos(θ+α), then Prove that ta...

If sin(θ+α)=cos(θ+α), then Prove that tanθ = 1+tanα / 1−tanα ​

Text Solution

Verified by Experts

The correct Answer is:
`tanalpha=(AP)/(BP),costheta=(AP)/(AC)`
Promotional Banner

Topper's Solved these Questions

  • STANDARD IX SYLLABUS

    CHETAN PUBLICATION|Exercise PROBLEMS FOR PRACTICE|20 Videos
  • SIMILARITY

    CHETAN PUBLICATION|Exercise ASSIGNMENT-1|12 Videos
  • STATISTICS

    CHETAN PUBLICATION|Exercise ASSIGNMENT -6|12 Videos

Similar Questions

Explore conceptually related problems

If hat a and hat b are unit vectors inclined at an angle θ then prove that : tan (θ/2) =|hat a + hat b|/ |hat a − hatb|

Prove that (secθ−tanθ)^2 = (1-sinθ)/(1+sinθ) ​

If x= a (theta+ sin theta), y =a ( 1- cos theta) then prove that at theta = (pi)/(2), y'' = (1)/(a) .

Prove that sin A/1+cos A = 1-cos A/sin A

If cosθ= 3/5 then the value of (sinθ−tanθ+1)/2tan^2θ ​

If tan A=1//2, tan B=1//3 , then prove that cos 2A=sin2B .

Prove that cos2A=cos^2 A -sin^2 A

Prove that sec A(1-sin A)(secA+tanA)=1 .

If y = (2 sin alpha )/(1 + cos alpha + sin alpha) then, prove that (1 - cos alpha + sin alpha)/(1 + sin alpha) = y .

Prove that sin (n + 1) theta sin (n - 1) theta + cos (n + 1) theta cos (n - 1) theta = cos 2 theta , n in ZZ .